Professor Iain McCulloch FRS

Professor Iain McCulloch
Professor of Polymer Materials; Department of Chemistry
College office: 
Fellow and Tutor in Chemistry

I teach undergraduate organic chemistry, particularly the synthesis and properties of polymers, and teach graduate courses in advanced polymer chemistry, and semiconducting materials for organic electronics.  This focusses on solar cells, and transistors.

Research interests: 

My research has focussed on using chemical molecular design and synthesis to create new organic materials capable of enabling new applications in optics, electronics and sensors.  These materials have specific functionality which can facilitate for example, light absorption to enable new flexible solar cells, detection of metabolites for bioelectronic sensors, electron conduction for transistors, and more recently, enhanced hydrogen production from photochemical catalysis of water. 

Selected publications: 

1.              Chen, H.; Wadsworth, A.; Ma, C.; Nanni, A.; Zhang, W.; Nikolka, M.; Luci, A. M. T.; Perdigao, L. M. A.; Thorley, K. J.; Cendra, C.; Larson, B.; Rumbles, G.; Anthopoulos, T. D.; Salleo, A.; Costantini, G.; Sirringhaus, H.; McCulloch, I., The Effect of Ring Expansion in Thienobenzo[b]indacenodithiophene Polymers for Organic Field-Effect Transistors. J. Am. Chem. Soc. 2019, 141 (47), 18806-18813.

2.              Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.; Baran, D.; McCulloch, I., Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 2019, 48 (6), 1596-1625.

3.              Bronstein, H.; Nielsen, C. B.; Schroeder, B. C.; McCulloch, I., The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 2020, 4 (2), 66-77.

4.              Hallani, R. K.; Faber, H.; Neophytou, M.; Yarali, E.; Paterson, A. F.; Anthopoulos, T. D.; McCulloch, I.; Moser, M.; Bristow, H.; Jenart, M. V. C.; McCulloch, I., Low-Temperature Cross-Linking Benzocyclobutene Based Polymer Dielectric for Organic Thin Film Transistors on Plastic Substrates. J Org Chem 2020, 85 (1), 277-283.

5.              Kosco, J.; Bidwell, M.; Cha, H.; Martin, T.; Howells, C. T.; Sachs, M.; Anjum, D. H.; Gonzalez Lopez, S.; Zou, L.; Wadsworth, A.; Zhang, W.; Zhang, L.; Tellam, J.; Sougrat, R.; Laquai, F.; DeLongchamp, D. M.; Durrant, J. R.; McCulloch, I., Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nature Materials 2020, 19 (5), 559-565.

6.              Wadsworth, A.; Chen, H.; Thorley, K. J.; Cendra, C.; Nikolka, M.; Bristow, H.; Moser, M.; Salleo, A.; Anthopoulos, T. D.; Sirringhaus, H.; McCulloch, I., Modification of Indacenodithiophene-Based Polymers and Its Impact on Charge Carrier Mobility in Organic Thin-Film Transistors. J. Am. Chem. Soc. 2020, 142 (2), 652-664.